
FINITE ELEMENT ANALYSIS OF
ELASTO-PLASTIC SOILS

by

W. Allen Marr, Jr.

John T. Christian

Report No.4
Finite Element Analysis of Elasto-Plastic
Frictional Materials for Application to

Lunar Earth Sciences

Contract No. NASA -9990
Soils Publication No. 301
Research Report R72-21

June 1972

Sponsored by
National Aeronautics and Space Administration

Manned Spacecraft Center
Houston, Texas

(NASA-CR-128 5 2 9 ) FINITE ELEMENT ANALYSIS
OF ELASTO-PLASTIC SOILS. REPORT NO. 4:

FINITE ELEMENT ANALYSIS OF ELASTO-PLASTIC

FRICTIONAL W.A. Marry Jr. (Massachusetts
Insto of Tech.) Jun. 1972 103 p CSCL 08M

COMOL

0

ZUKWL IN UOMU

z-

Rn~iwwM MTM W WDRc~uw

bffk"& wwmowu w~ Imx

I ::

_ , 5 



FINITE ELEMENT ANALYSIS OF

ELASTO-PLASTIC SOILS

by

WILLIAM ALLEN MARR, JR.

JOHN T. CHRISTIAN

Report No. 4

Contract No. NASA-9990

Finite Element Analysis of Elasto-Plastic

Frictional Materials for Application to

Lunar Earth Sciences

Sponsored by

National Aeronautics and Space Administration

Manned Spacecraft Center

Houston, Texas

Soil Mechanics Division

Department of Civil Engineering

Massachusetts Institute of Technology

Cambridge, Massachusetts

April 1972

Soils Publication No. 301

Research Report R72-21

I



ABSTRACT

FINITE ELEMENT ANALYSIS OF ELASTO-PLASTIC SOILS

Predictions of the stresses and displacements in soil
masses resulting from changes in load are important in the
design and construction of many civil engineering struc-
tures. Such predictions require the use of an appropriate
constitutive relation which defines the stress-strain be-
havior of soil.

The behavior of finite element models employing dif-
ferent constitutive relations to describe the stress-
strain behavior of soils is investigated. Three models,
which assume small strain theory is applicable, include a
non-dilatant, a dilatant and a strain hardening constitu-
tive relation. Two models are formulated using large
strain theory and include a hyperbolic and a Tresca elastic
perfectly plastic constitutive relation.

These finite element models are used to analyze re-
taining walls and footings. Excellent solutions are
obtained for the failure load of retaining walls in
drained frictional material. Attempts to obtain the fail-
ure load of footings in drained frictional materials are
only moderately successful. Good solutions are obtained
for the failure of footings on purely cohesive soil using
both the small strain and large strain formulations.

Methods of improving the finite element solutions are
investigated. For non-linear problems better solutions
can be obtained by using smaller load increment sizes and
more iterations per load increment than by increasing the
number of elements. Suitable methods of treating tension
stresses and stresses which exceed the yield criteria are
discussed.
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CHAPTER 1

INTRODUCTION

Major applications of the principles of soil mechanics

involve prediction of stresses and displacements induced

by changes in loading. Since the development of the

discipline of soil mechanics by Karl Terzaghi (1923, 1943),

researchers and practitioners have attempted to formulate

and refine constitutive relations defining the stress-

strain behavior of soils. Such constitutive relations

are usually non-linear, and, when coupled with the complex

geometry, material properties, and boundary conditions

prevailing in most practical problems, they render closed

form or analytical solutions impossible. Consequently,

numerical procedures have been developed, that will handle

these complexities. Recently the most popular and success-

ful numerical procedure has been the finite element method

because it is simple and flexible.

The object of this research is to investigate the

behavior of finite element models employing different

constitutive relations to describe the stress-strain be-

havior of soils. The behavior of these constitutive re-

lations and their ability to solve problems for which

analytical solutions are available will be presented.

Methods to improve the finite element solution of these
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problems will also be considered.

Five constitutive models are employed. Three models

assume that small displacements result from each load

application so that infinitesimal strain theory is applic-

able. These are a strain hardening model that is similar

to the Cambridge Clay model formulated by Roscoe and his

co-workers (1963,1968 ) and two elasto-plastic models

using a Mohr-Coulomb yield criterion. The other two

models assume that appreciable changes in geometry may

occur upon loading. This requires a large-strain formu-

lation. The constitutive relations are a perfectly plastic

Tresca material and a hyperbolic approximation of the

experimental stress-strain curve for a given soil.

The derivations of the constitutive relations and

detailed descriptions of the finite element programs are

given by Hagmann (1971) and Molina (1971). Only pertinent

portions will be cited in this report. Chapter 2 reviews

the basic assumptions of the constitutive relations and

general descriptions of the finite element programs.

Chapter 3 discusses the effects of varying the finite

element model and describes modifications made to the small

strain programs to improve their performance. Chapter 4

compares the finite element solutions with existing solu-

tions for bearing capacity and retaining wall problems and

discusses the ability of the constitutive relations to pre-
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dict stress-strain behavior of soil. Chapter 5 presents

conclusions and recommendations for further study.
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CHAPTER 2

DESCRIPTIONS OF CONSTITUTIVE RELATIONS

AND FINITE ELEMENT PROGRAMS

The basic finite element method has been described by

many authors (see Clough, 1965; Felippa, 1966; Zienkiewicz,

1971) and will not be discussed in detail in this report.

The finite element model is formed by subdividing the soil

medium into a finite number of discrete parts or elements

interconnected at the element corners or nodes. Each

element must satisfy the following requirements:

Equilibrium must exist between externally applied

forces and internal stresses.

Displacements between and inside elements must be

compatible.

Stresses and displacements within each element

must satisfy the stress strain relationship

assigned to that element.

The entire assemblage of elements must remain in

equilibrium.

To satisfy these requirements, the direct stiffness or

displacement method is applied (Clough, 1966). A system

of simultaneous equations is obtained which relate nodal

forces to nodal displacements by stiffness coefficients

which are a function of element material properties and

12



element geometry. These equations are solved for the

nodal displacements from which the element deformations,

strains, and stresses may be calculated.

A two-dimensional element known as the constant strain

triangle is used in all the finite element programs dis-

cussed in this report. Strain and stress are constant

throughout the element; consequently, displacements vary

linearly within the element. If four constant strain

triangles are grouped together to form a quadrilateral, the

center node displacements will depend only on the displace-

ments of the four nodes forming the quadrilateral corners.

The center node displacements can be expressed as functions

of the displacements of the quadrilateral corner nodes and

may be removed from the matrix of displacement unknowns, a

technique known as static condensation and described by

Wilson (1965). The value of stress and strain in the quad-

rilateral element is then taken as the average of the values

for the four triangular elements. Quadrilateral elements

are input to the programs, which subsequently divide each

quadrilateral into four triangles to compute element

stiffnesses, stresses and strains.

All programs are for plane strain conditions. Loads

are applied statically and incrementally. No time effects

or pore pressures are considered. The constitutive re-

lations have been selected and computer programs have been

13



written to utilize physical material properties readily

obtainable from standard testing techniques. With the

exception of the hyperbolic constitutive relation, all

programs assume that the material properties governing

elastic deformations are isotropic. The hyperbolic model

uses an interpolation procedure to account for anisotropic

elasticity.

Each of the five constitutive relations and finite

element programs is discussed below. The first three

models are for small-strain analysis and are described in

more detail by Hagmann (1971). The remaining two are

large strain formulations and are described by Molina

(1971). Table 2.1 summarizes each model and the soil

parameters required as input for the finite element pro-

grams.

2.1 Elasto-Plastic Dilatant Mohr-Coulomb Material

This program analyzes drained, frictional materials

assuming they obey the Mohr-Coulomb failure criterion

which states that the ultimate shear strength of a mat-

erial is related to the normal stress on the failure plane

times an angle of internal friction plus material cohesion,

or

Tff = c - aff tan4 (2-1)
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where the sign convention is tension positive. (Appendix

A defines the symbols used in the text.) Figure 2-1

illustrates the failure envelope described by Eq. 2-1 in

terms of p, the mean normal stress, and q, the deviatoric

stress,

al+a3 a X+az
_1 3 _xx zz

2 2

1 (2-2)
a1-a3 axxazz 2 + 2]

q 2 2 xz

where al and a3 are the major and minor principle stresses.

The Mohr-Coulomb failure law assumes that the intermediate

principal stress has no effect on the failure stress.

Any change in the state of stress that produces a

final stress state below the Mohr-Coulomb envelope is

assumed to induce elastic strains, and the constitutive

relation yields the well known perfectly elastic stress-

strain equations for plane strain (Timoshenko and Goodier,

1951). Once the stress state reaches the Mohr-Coulomb en-

velope, the element must yield. Now the constitutive

equations become the perfectly plastic incremental re-

lations developed from the theory of the plastic potential

(von Mises, 1928). This theory states that the increments

of plastic strain are proportional to the gradient or out-

ward normal to the yield criterion. Hagmann et al. (1970)

describe in detail the derivation of the incremental elastic-



plastic stress strain relations, one consequence of which

is that there is a constant plastic volume increase during

shear at the Mohr-Coulomb surface. Figure 2.2 illustrates

the strains produced by this constitutive relation. Drucker

and Prager (1952) and Christian (1966) describe these re-

sults of plasticity theory for frictional soils. In nature

dense sands and overconsolidated clays experience volumetric

increases during shear but eventually reach a state of con-

stant volume, so there is a discrepancy between the plastic

theory and experimental observation.

2.2 Elasto-Plastic Non-Dilatant Mohr-Coulomb Material

The dilatant Mohr-Coulomb model described in the

previous section predicts large and continuous increases

in volume during shear, a prediction that is not in accor-

dance with observed behavior. To correct this a non-dil-

atant Mohr-Coulomb model was developed. It starts from the

same incremental plastic strain that the dilatant model

uses, but the volumetric component of the plastic strain

increment is removed to give a non-dilatant plastic beha-

vior. Hagmann et al. (1970, 1971) describe the derivation

in detail. The difference between the two Mohr-Coulomb

models lies only in the incremental stress-strain relations

for plastic material. In the non-dilatant case this relation

is unsymmetric. Figure 2.3 illustrates this constitutive
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relation.

The finite element computer program and input para-

meters for the non-dilatant model are the same as for the

dilatant model. An input code directs which plastic

stress-strain relations are to be used.

2.3 Strain Hardening Mohr-Coulomb Material

The strain hardening model introduces an additional

yield surface below the Mohr-Coulomb failure envelope,

which allows plastic strains to occur for stress changes

below the failure line. No plastic or irrecoverable strains

occur below the Mohr-Coulomb failure envelope in the di-

latant and non-dilatant models. However, all soils do

exhibit irrecoverable strains (except some dense sands and

overconsolidated clays at very low stress levels). The

strain hardening model produces irrecoverable strains for

stress changes on the capped yield surface.

The combination of the Mohr-Coulomb failure line with

a capped yield surface which moves with changes in stress

level was proposed by Drucker, Henkel, and Gibson (1957).

Roscoe and his associates (1958, 1963, 1968) modified

the basic capped yield criterion theory to describe better

the strain behavior of clays. Christian (1966) suggested

that the capped yield surface be modelled as an ellipse

to simplify the mathematical relations.
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Figure 2.4 illustrates the yield surface for the

strain hardening model. To illustrate how this model

works, consider point X in Figure 2.4 which represents the

initial state of stress in an element. An increment of

load is applied. If the stress path for that increment is

line XY, the resulting strains will be elastic. If the

stress path is line XCD, then the element will yield plas-

tically along CD with elastic strains resulting along XC.

For stress path XMN, XM will result in elastic strain and

MN will cause plastic strains. In addition, the elliptical

yield surface will move outward to A'NB', and during sub-

sequent load increments all strains within A'NB' and the

Mohr-Coulomb envelope will be elastic. Hagmann (1971)

describes the incremental stress-strain relations for the

strain hardening model.

2.4 Elastic-Perfectly Plastic Tresca Material

This model for large strains is developed from an

approach described by Biot (1965) for the incremental de-

formation of initially stressed mediums. The derivation

assumes that incremental stresses are infinitesimal with

respect to initial stresses. For large strain theory,

higher order terms in the stress-strain and geometrical

equations become important; consequently, second order

terms are included in the constitutive relations for this

18



model. The soil is assumed to fail according to the Tresca

yield criterion which states that at some constant value of

shear stress the material will yield. The soil is assumed

to behave elasticly before yield and perfectly plastic

once the shear stress has reached the yield value. The

Tresca yield criterion is valid only for saturated un-

drained soils, and it is thus applicable primarily to un-

drained loading of clays. The details of the large strain

model are described by Molina (1971).

2.5 Hyperbolic Stress-Strain Relation

The hyperbolic relation assumes that the stress-strain

curve for a soil can be approximated by a hyperbola. This

non-linear relationship is replaced with a series of

straight lines each of which is tangent to the hyperbolic

stress-strain curve at some point. Tangent moduli values,

which are a function of the stress level, are computed

from the hyperbolic approximation. Strains are obtained

for each load increment using tangent moduli values com-

puted from the stresses in the preceding increment and

the elastic constitutive relations for plane strain.

Kondner (1963) and Kondner and Zelasko (1963) have

shown that the stress-strain curves of many soils can be

approximated by a hyperbola. However, many soils, including

dense sands and overconsolidated clays, experience a

19



decrease in strength once the peak strength is reached.

With the present finite element formulation it is not

possible to simulate a stress-strain relationship in

which the strength decreases beyond a peak. To do so re-

quires negative modulus values and the finite element

method will not converge to a solution,. Consequently,

when an element reaches the peak strength, modulus values

are approximated by a straight line of small positive

slope.

The hyperbolic stress-strain relation was first

applied in finite element methods by Duncan and his co-

workers (see for example Duncan and Chang (1971)). They

derived the incremental or tangent form of the relation-

ship. The extension to large strain cases was made by

Molina (1971).

20
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CHAPTER 3

IMPROVEMENT OF FINITE ELEMENT SOLUTIONS

Finite element methods are numerical solutions of the

differential equations governing the behavior of a material.

The accuracy of the solution and the ease with which it is

obtained are dependent on the numerical techniques employed

to describe and solve these equations. This chapter will

investigate several methods of improving the solution of a

problem without greatly increasing the difficulty or cost

required to obtain that solution,. Modifications which have

been made to the dilatant, non-dilatant, and strain harden-

ing models to improve their solutions are described.

3.1 Correction of Stresses Which Exceed the Yield Criterion

The application of a load increment to nodes of the

finite element model produces a corresponding stress incre-

ment for each element which is added to the stress existing

in that element. As a result, the incremental stress may

change the stress state from one below the failure envelope

to one above the envelope. Implicit in the failure or

yield criterion is the requirement that such a stress state

cannot exist. Therefore, a correction has to be applied to

reduce the computed stresses to values that are compatible,

with the envelope. At the same time the strains must be

26



adjusted to satisfy the stress-strain relation.

One technique to do this correction is to subdivide

the load increment into fractions such that elements which

yield for the first time during this load increment end up

on the failure envelope. Such a procedure is very time-

consuming and was not used in this work. The common tech-

nique and the one employed in this report is to correct

only the stresses so that they lie on the yield surface at

the end of the load increment. This procedure is not entire-

ly satisfactory because it produces errors in the strains

and non-equilibrium in the stresses of adjacent elements.

However, these difficulties can be overcome by analyzing

each load increment more than once. Reanalyzing each load

increment, a process known as iteration, generally reduces

the errors in the strains and the non-equilibrium in the

stresses. In this report an iterative procedure which is

discussed in detail in Section 3.2 is combined with the

stress correction technique to produce stress states which

satisfy the failure law and are close to equilibrium.

Three different methods were developed to correct stress

states which exceed the failure envelope. Method 1, called

MOCO 1, reduces the maximum shear stress, q, to a value com-

patible with the failure criterion while maintaining p

constant. Method 2, MOCO 2, corrects the stress state back

along a path perpendicular to the Mohr-Coulomb failure line.

27



Method 3, MOCO 3, corrects the stress state assuming the

vertical stress remains constant. Figure 3.1 illustrates

the correction paths for each of these techniques. The

equations for the corrected stresses are derived in Appendix

B.

A smooth retaining wall and a rigid footing were analyz-

ed with each of these correction procedures to determine

which method would produce the best solution. The finite

element meshes, or grids, are shown in Figures 3.2 and 3.3.

The passive earth pressure for a dry cohesionless soil

on a smooth wall of height H can be found from Rankine's

earth pressure theory and is

P y 1+sin$ H (3.1)p 2 l-sin4

where

Pp = passive force

= angle of internal friction of soil

y = unit weight of soil

For a p of 30° , y of 2.0 TSM, and H of 10 M, Pp is 300T.

Figure 3.4 shows the results of three solutions using

the non-dil&tant model with the three different correction

procedures. Since both the Rankine theory and the non-dila-

tant model assume that failure is controlled by the Mohr-

Coulomb failure envelope, they should yield the same passive
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force at failure. Methods 1 and 2 overestimate the Rankine

failure force by 6.7%; whereas Method 3 is in perfect agree-

ment. The horizontal and vertical stresses at the end of

each load increment are plotted in Figure 3.5 for elements

13, 14, and 15. For Methods 1 and 2, the vertical stresses

at failure are higher than the initial vertical stresses. In

an actual case the vertical stresses around the wall should

not change with the horizontal loading of the wall. Method

3 produces vertical stresses at failure which are similar

to the initial vertical stresses and in agreement with ac-

tual soil behavior.

No exact solution exists for the bearing capacity prob-

lem. Terzaghi developed a solution from limiting equilibrium

that is conservative but provides useful results. Figure

3.6 presents the load-displacement curves for a rough, rigid

footing loaded to failure using the three correction tech-

niques and the non-dilatant model. The ultimate bearing

capacity for this case using Terzaghi's bearing capacity

factors is 150 TSM. Methods 1 and 3 yield similar results

and predict failure at an average footing stress of 300 TSM.

Chapter 4 will consider what the actual bearing capacity

should be; however, it is readily apparent that Method 2 is

producing an unreasonable solution after a displacement of

0.12 M. For elements outside the loaded area in which the

horizontal stress is larger than the vertical stress, Method

29



2 produces vertical stresses in elements which are signi-

ficantly different from the overburden stresses. Adjacent

elements are not in equilibium; consequently, an instabil-

ity is introduced into the solution.

Considering these results, in which Method 3 worked

best for the smooth retaining wall and Methods 1 and 3

worked best for the footing, Method 3 appears to be the

best overall correction technique, and will be used in the

remainder of this thesis.

3.2 Iteration Procedure

Due to the facts that:

1. elements may be come plastic during a load

increment but the stiffness coefficients re-

main elastic until the next increment;

2. stress states which exceed the yield criterion

are reduced, inducing non-equilibrium in

stresses between elements;

3. strains do not satisfy the stress-strain

relation for the corrected stresses,

elements do not satisfy the requirements specified in Chap-

ter 2 for the finite element method, As a result errors

are induced in the computed stresses and strains. If each

load increment is analyzed more than once these errors will

usually be reduced.
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An iteration procedure and convergence criterion have

been added to the dilatant, non-dilatant, and strain harden-

ing models to analyze each load increment more than once

in order to improve their solutions. The convergence

criterion requires that the corrected maximum shear stress,

q, not differ from the uncorrected maximum shear stress by

a specified percentage. This is one way of requiring that

the element stresses be close to equilibrium. After each

increment and for each element the convergence criterion is

checked. If it is not satisfied, the element stiffnesses

are recalculated, changing those which yielded during the

previous iteration to plastic. The equilibrium equations are

reassembled and solved for new strains. Stresses are recom-

puted and the convergence criterion checked. This process

continues until the solution either converges or a specified

number of iterations are completed, and then the next load

increment is applied.

Figure 3.7 illustrates the effects of additional iter-

ations on the solution of a rough, rigid footing. For a given

displacement one iteration reduces the average stress acting

on the footing, or in other words, for a given average stress

on the footing one iteration increases the displacement of

the footing. The additional iteration causes elements

which have yielded to have plastic rather than elastic

stiffness and produces larger displacements. Three
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iterations give essentially the same result as two itera-

tions for this case except after failure.

Reducing the size of the load increment will also re-

duce the errors in stresses and strains. Figure 3.8 com-

pares the original solution to those obtained by doing one

iteration for the same load increment size and obtained by

halving the load increment size. Both of the latter re-

quire about the same computation time. Which solution is

more correct will be discussed in Chapter 4. The main point

is that a better solution can be obtained by reducing the

load increment size or by increasing the number of iterations.

3.3 Effect of Number of Elements

Increasing the number of elements used to model a

problem and the corresponding increase in the number of

nodes usually leads to a better solution for the stresses

and displacements. Adding more nodes increases the flex-

ibility of the entire system. Adding more elements pro-

duces a better definition of the stress distributions es-

pecially at stress concentrations. Many authors including

Clough et al. (1965) have shown this behavior to be true.

However additional nodes and elements increase the amount

of computer time and the computer storage space required to

solve the equations, usually by an amount exceeding the

increase in the number of nodes and elements. There is
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an economic advantage in reducing the number of nodes and

elements as much as possible and still maintain an accept-

able solution.

Figure 3.9 illustrates the results of increasing the

number of elements from 30 to 96 to model a rigid footing

while maintaining all other variables, including the lat-

eral boundaries, constant. These results are from the non-

dilatant model with a frictional material. The surprising

result is that with three times as many elements, there

is not much difference in the solution. Similar results

have been obtained for a retaining wall using 64 and 145

elements. The exact solution of this problem is unknown;

however, one can conclude that for the purpose of doing

comparisons of the various constitutive relations and sol-

ution procedures in a homogeneous material, a relatively

small number of elements is sufficient.

3.4 T'en:sile EBl:emetnts,

In the non-dilatant and dilatant models surface elements

to the side of a footing, or in front of a retaining wall

loaded passively, tend to become tensile, i.e., the stresses

become positive. Drained soil cannot sustain tensile

stresses, and cracks form. However, the present finite ele-

ment formulation will not allow such cracks to develop.

Hagmann (1971) suggested that the stiffness of tensile
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elements be reduced and their stresses set equal to zero.

In general variations of this method caused his solutions

to become methematically unstable.

This procedure was carefully reconsidered. In Hagmann's

method, each time an element became tensile, its stiffness

was reduced. If in a subsequent increment the same element

became tensile, the stiffness was again reduced. This

procedure soon reduces an element's stiffness to the point

where the global stiffness matrix becomes ill-conditioned

and solution by Gaussian elimination produces large errors.

The method adopted in this work is to reduce a tensile

element's stiffness only once, require the element stiffness

to maintain that value for all subsequent load increments,

and set the stresses equal to zero. If in subsequent incre-

ments, the element again becomes tensile only the stresses

are set equal to zero. In Figure 3.10 the results of run

HS, Figure G-6 of Hagmann (1971) are reproduced along with

the results of an identical run with the above modification

to treat tensile elements. The mathematical instability

found by Hagmann does not occur using this procedure.

3.5 Interpretation of Nodal Forces

In the finite element method forces are computed at

each node which correspond to the external loads applied to

the model and the internal stresses in the elements. The
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load on a wall or footing will be the sum of the forces

acting at the individual nodes comprising that wall or foot-

ing, e.g. nodes 18, 19, 20, 21, 22 in Figure 3.2 and nodes

6, 12, 18, in Figure 3.3. Incremental nodal forces are

computed from the incremental strains and element stiffnesses.

They are then summed to find the total load acting on the

structure. However, as was discussed in Section 3.2, the in-

cremental strains and element stiffnesses may contain errors.

Consequently, the incremental nodal forces will be in error,

and the computed load acting on the structure will become more

incorrect with each additional load increment.

In addition high stress concentrations exist around node

18 in Figure 3.2 and node 18 in Figure 3.3. These increase

the forces acting on that node. In an actual case a wall

would slide away from node 18 or cracks would develop at the

edge of the footing, but these deformation modes cannot

occur in the finite element model. As a result, the com-

puted nodal force at stress concentrations like node 18

are too large.

The force acting on a structure may also be computed

from the stresses in the elements adjacent to the structure.

Since the stresses are required to conform to the yield cri-

terion, it might be expected that a better estimate of the

failure load could be obtained from the stresses than from

the nodal forces. Indeed this is the case as shown in
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Figure 3.11 for a retaining wall. The curves obtained

from the stresses are the same as those shown in Figure 3.4

and yield a good estimate of the failure load. However,

the curves obtained from the nodal forces greatly over-

estimate the failure load due to the errors in the nodal

forces discussed above.

The error in the nodal forces can be reduced by de-

creasing the error in the strains, e.g. by increasing the

number of iterations per load increment or reducing the load

increment size. A larger number of elements will better

define the stress values at stress concentrations and pro-

duce more correct values of nodal forces at those points.

Figure 3.J2 demonstrates that these refinements do reduce

the difference between the total load computed from nodal

forces and that computed from adjacent element stresses.

However, since good estimates of failure loads can be ob-

tained from the element stresses, the additional compu-

tation time and expense necessary to obtain more correct

nodal force values seems unwarranted. For the remainder of

this thesis, only loads obtained from the stresses in

elements adjacent to a structure will be considered.

3.6 Reduction of Core Storage Requirements

Finite element solutions to practical problems can be

expensive. Minor revisions to a program's mode of operation
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may sometimes result in significant cost reductions. In

finite element programs, computer cost has two major compo-

nents, core storage requirements and computing time. Sev-

eral matrices in the programs have values which are used more

than once in the analysis. A decision must be made whether

to store these values as they are computed for later use,

which requires greater computer storage space, or recompute

values as they are needed, which requires additional compu-

tation time. This decision is based on the relative cost of

storage space and computation time.

For the computer system currently in use at M.I.T.,

IBM 370-M155-MVT, it is cheaper to recompute values for the

large matrices in these programs as they are needed. For

other computing systems, the opposite may be true, and the

programs should be adjusted accordingly.
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CHAPTER 4

SOLUTIONS FOR RETAINING WALLS AND FOOTINGS

Two problems frequently encountered in soil mechanics

are those of determining the ultimate loads that can be

imposed on retaining walls and footings. From the theories

of plasticity, limit analyses and extremum methods, analy-

tical solutions have been obtained which predict the loads

that cause failure of retaining walls and footings. In

this chapter finite element programs employing the five

constitutive relations discussed in Chapter 2 are used to

solve retaining wall and footing problems. The results

of the finite element solutions are compared with their

analytic counterparts to investigate the predictive ability

of the constitutive relations.

4.1 Retaining Walls

Failure of retaining walls is one of the easier

analytical problems in soil mechanics. Coulomb (1776)

developed a formula for the earth pressure acting on a

retaining wall by assuming straight lines of rupture. Later

Rankine (1857) developed his well known formula for active

and passive states of failure. These two theories remain in

wide use today despite their limitations and the later de-

velopments of Kotter (1903), Janbu (1957), Sokolovski (1965),
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Hansen (1953), and others. These methods have been ade-

quately described elsewhere and only their results will

be included in this thesis. See Hansen (1953) and Sokolov-

ski (1965) for an excellent review of these and other re-

taining wall solutions.

All analyses in this section are done using the stan-

dard retaining wall grid shown in Figure 3.3 unless other-

wise noted. This grid was developed to model the problem

sufficiently with a minimum of elements in an effort to

reduce computation costs.

4.'1'.1 Non-'d'ilatatit Material

The load displacement curves obtained for rigid hori-

zontal translation of a smooth retaining wall in dry co-

hesionless soil using the non-dilatant material are shown in

Figure 4.1. Load is expressed as an earth pressure coeffi-

cient, K, which is defined as the horizontal load on the

wall divided by .5yH2 . Table 4.1 summarizes the soil para-

meters used for these and subsequent finite element solu-

tions for retaining walls. The active and passive failure

loads predicted by the non-dilatant model are exactly

those obtained from Rankine's earth pressure theory. This

result is to be expected since both analyses make the same

basic assumption, i.e., the soil behind the wall fails and

can gain no additional shear stress once the stress state
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reaches the Mohr-Coulomb failure envelope.

Figures 4.2a and 4.2b show typical yield patterns at

failure for the active and passive cases respectively. The

top row of elements behind the wall all fail at very low

displacements. These elements have low horizontal and

vertical stresses at the onset of loading, and a small dis-

placement of the wall load causes them to yield. An active

state develops in front of the wall for passive loading.

Cracking and sliding would hinder the development of such

a large active zone in a field case. The close proximity of

the rigid bottom boundary produces a yielded zone beneath

the wall. From these results one can see that although

this relatively coarse mesh produces a somewhat unreasonable

picture of the yield zones at failure, a good estimate of

the failure load is obtained. A more realistic yielded zone

can be obtained by using a larger mesh with more elements.

Horizontal loading or unloading produces no abrupt ro-

tation of principal planes; consequently a good finite ele-

ment solution can be obtained with one iteration. As will

be shown in Section 4.2, loading of footings does produce

abrupt principal plane rotations and more iterations per

load increment or smaller load increments become necessary.

Friction between the wall and soil increases the load re-

quired to cause passive failure and reduces the load required
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to cause active failure. Figure 4.3 illustrates this fact

for the case where the friction angle between the soil and

wall equals that of the soil. For the non-dilatant model

wall friction increases the passive failure load to 188%

of the Rankine passive force and reduces the active failure

load to 82.5% of the Rankine active force. These values are

constitent with those presented in Table 4.2 which summarizes

the results of several failure theories for the case where

the wall friction angle equals that of the soil. The dis-

placements required to cause failure are 4 to 5 times larger

for a rough wall than for a smooth wall.

Active and passive failure states may also be reached

by rotating the wall about its bottom or top. The solid

lines in Figure 4.4 show the change in earth pressure coeffi-

cient as a wall is rotated about its base. The dashed lines

are the results for horizontal translation, Figures 4.1 and

4.2, replotted. For rotation, Y is defined as the displace-

ment at midheight of the wall, so that a given Y implies

the same volume of soil displaced in rotation as in trans-

lation. From these results it is apparent that for rota-

tion about the wall base much larger displacements are nec-

essary to develop fully failure than for horizontal transla-

tion. The larger displacements are necessary to develop

sufficient strains in the elements at the wall base to cause

them to yield.
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In an actual case, pure rotation about the wall base

can never be practically achieved. There will always be

some translation which may change considerably the amount

of rotation necessary to fully develop the active or

passive resistance along the wall.

4.1.2 Dilatant Material

Figure 4.5 illustrates the values of earth pressure

coefficient for horizontal translation of a rough and

smooth retaining wall in dry cohesionless soil using the

dilatant model. The smooth, passive earth pressure coeffi-

cient at failure is 3.2 or 6.7% greater than the Rankine

passive failure coefficient. The smooth active coeffi-

cient is .32 of 97% of the Rankine value for a smooth

wall. The rough, passive earth pressure coefficient

is 6.42 or 214% of the Rankine smooth wall passive value

and is similar to the higher values given in Table 4.2.

The smooth active earth pressure coefficient ob-

tained from the dilatant material is 97% of that obtained

from the non-dilatant material. The smooth, passive

value for the dilatant material is 107% of that for the

non-dilatant material while the rough, passive value is

110% greater. These differences are consistent with the

fact that the dilatant model expands in volume when

sheared which results in higher shearing resistance and
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increase: the load required to cause failure. The lar-

gest strength increase due to dilatancy occurs in the

rough, passive case where it is to be expected that the

shearing stresses developed in the soil will be greatest.

4.1.3 Strain Hardening Material

The results for the strain hardening model for a

smooth wall in horizontal, passive translation are shown

in Figure 4.6. There is an abrupt change in the slope

of the load displacement curve at a K of 1.56 which is due

to most of the elements in the mesh developing stress

states which exceed their respective capped yield surface.In

the' strain hardening model, el'ements wh'ich reach ''a stress

state on the Mohr-Cd-ulomb- failure line 'deform the same way

as elements which reach a stress:state on the capped yield

surface. There is no provision for an element to fail

plastically. Consequently, the elements behind the wall

continue to deform without ever failing as shown in Fig-

ure 4.6.

4.1.4 Hyperbolic and Tresca Materials

Molina (1971) has investigated the retaining wall

problem using the hyperbolic and Tresca large strain mod-

els. His results are in agreement with those presented

here (with the exception of the strain hardening model).
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Excellent solutions for the horizontal earth pressure

on a retaining wall can be obtained from these finite

element models. Of course, one can obtain good solutions

for the failure loads without the finite element method.

The sole reason that they are considered here is to provide

concrete evidence that the finite elements programs do

analyze the stress-strain behavior of soil correctly.

4.2 Strip Footing on Frictional Material

Prediction of the load required to cause a bearing

capacity failure of a strip footing is much more compli-

cated than prediction of the failure load for a retaining

wall. Combining the effects of gravity, friction and

cohesion make exact analytical solutions impossible without

making simplifying assumptions. Bearing capacity factors

obtained by Terzaghi are commonly used for predicting the

ultimate load a footing may carry even though they are

known to be considerably conservative (Lundgren and Morten-

sen (1953) and Gorbunov-Possadov (1965)). Other solutions

have been obtained (see Reddy (1970)) but which one is more

correct is uncertain. In this section the failure of a

footing on dry cohesionless soil will be investigated.

Only rough, flexible and rough, rigid footings are consid-

ered. As will be shown, the solution of a footing problem

is much more dependent on the load increment size and the
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number of iterations per load increment than was the re-

taining wall problem.

The standard footing grid shown in Figure 3.2 is

used for the computer solutions unless otherwise noted.

Since the problem is symmetric about the centerline of

the footing only half of the geometry is required. This

grid is too coarse to give the most correct finite element

solution; however, there are a sufficient number of ele-

ments to provide solutions which can be used for quali-

tative evaluation of the solution procedures and the con-

stitutive relations. Table 4.3 summarizes the parameters

used for the footing problems.

4.2.1 Non-dilatant Material

Figure 4.7 contains four displacement curves for

loading of a rough, rigid footing on dry, cohesionless

soil. The number of iterations per load increment and the

size of the load increments were varied to determine their

effect on the load-displacement solution. Run 21 was load-

ed with displacement increments of .02 M and no itera-

tions. Run 22 is similar to Run 21 except one additional

iteration was performed per load increment. The additional

iteration produces a larger displacement at a given load,

which is the result of plastic strains in elements that

yielded in that increment. With no iteration, plastic
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strains do not occur in an element until the increment

following that in which the element exceeded the failure

criterion. An iteration produces plastic strains in

the same load increment that failure was reached.

A large load increment size results in premature

yielding of elements. The stress in an element may exceed

the failure criterion during the large increment;whereas,

several smaller increments which give the same load as

the one large increment may produce a stress state below

the failure line.

For the finite element solutions, bearing capacity

failure is defined as the point where the load-displace-

ment curve undergoes a significant change in slope. This

definition is somewhat arbitrary; however, for frictional

materials the finite element solutions never produce in-

finite displacements at some maximum load. Run 21 pre-

dicts failure at an average footing stress of about 300

TSM; whereas, Run 22 fails at 200 TSM.

The load increment size for Run 23 was half that of

Run 21 and no iterations were performed. Failure occurs

at 240 TSM. Run 24 has a load increment size one fourth

that of Run 21 and one iteration. The displacement curve

is much smoother and failure at 230 TSM is much better

defined than in the previous results. It appears that
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a displacement increment size less than 2.10-8 H-E,

where H is the height of the finite element grid in meters,

E is the modulus of elasticity of the soil in tons per

square meter, and the increment size is in meters, is

necessary to obtain a reasonable load-settlement curve

for a footing with the non-dilatant model.

The failure load predicted by Terzaghi bearing cap-

acity factors for this case is 148 TSM. The best estimate

of the failure load from these solutions is 230 TSM;

however, a better solution may be obtained with a larger

mesh, smaller load increments, and more elements.

Figure 4.8 illustrates the yielded zones at various

footing loads for Run 24. Contrary to the behavior of a

purely cohesive or undrained material which fails when

the yielded zone intersects a free boundary (Christian

(1966)), a frictional material continues to develop addi-

tional shearing resistance once failure is reached. Con-

sequently, the load-displacement curves never become ver-

tical as is the case with a cohesive or undrained material.

The yielded patterns shown in Figure 4.8 are very dependent

on the grid used. Yielding at the bottom and right

boundaries suggests that a larger grid is necessary to de-

fine better the development of the yield zones. A sig-

nificant yielded zone develops at only 10% of the failure

load. Since the soil starts out in a Ko condition very
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little displacement is required to initiate yielding.

In Figure 4.9 a flexible footing, Run 25, is compared

with a rigid footing, Run 24. Displacements of the rigid

footing are intermediate between the centerline and edge

displacements of the flexible footing. The flexible

footing fails at a load of 212 TSM.

4.2.2 Dilatant Material

Once a dilatant material fails, large volumetric in-

creases occur which lead to additional shearing resistance.

Figure 4.10 shows the load-displacement curve for a rigid

footing on a dilatant material. Run 26 does not exhibit

a change in slope of the load-displacement curve that

would indicate failure, even at stresses in excess of

three times the Terzaghi bearing capacity value. Run 27

with a load increment size one fourth that of Run 26 gives

essentially the same result. For the retaining wall prob-

lem the results for the dilatant model were similar (within

7%) to the non-dilatant model. The reason that the

dilatant model is much stronger in the footing problem is

that the boundary conditions are much more confining.

With each load application, the average confining stress

increases, the soil dilates, and additional shearing re-

sistance is developed.

To investigate the confining effect of the boundary



conditions, the right vertical boundary of the grid was

allowed to move freely, horizontally and vertically, in

Run 28. Relaxation of the right boundary constraint

produces a much softer, weaker material; however, the grid

no longer models the typical bearing capacity problem

for a confined soil. A larger grid with more elements

will minimize the effects of the boundary constraints,

but the strength of the dilatant model will remain much

higher than that predicted by Terzaghi or the non-dilatant

model as was shown by Hagmann (1971).

4.2.3 Strain Hardening Model

Figure 4.11a shows the solution of a rigid footing

on the standard mesh using the strain hardening model.

This model is much softer than either the dilatant or

non-dilatant model and there is no point on the load dis-

placement curve which can be defined as failure. Figure

4.11b shows the horizontal and vertical stresses for three

elements as loading progresses. The stress behavior is

very erratic which is due mainly to the way the strain

hardening model treats elements on the failure line.

Stress changes on the Mohr-Coulomb failure line produce

the same type of strains as do stress changes on the

elliptical yield surface in the present formulation.
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An element is never allowed to fail plastically. Clearly,

strains on the failure line should follow a different

constitutive relation such as that in the dilatant or

non-dilatant model.

4.2.4 Hyperbolic Material

The load displacement curve for a footing on a

drained frictional material using the large strain hyper-

bolic model is shown in Figure 4.12. Results from the non-

dilatant model are also shown for comparison. As the foot-

ing load is increased, the hyperbolic model becomes more

stiff, and failure is never reached.

The present hyperbolic formulation computes an incre-

mental shear modulus, G, which is a function of the ratio

of the stress difference, (a1 -a3), and the confining stress,

a3' The incremental bulk modulus, B, depends only on the

confining stress, a3' As the material is loaded, G de-

creases and B increases. When B becomes considerably lar-

ger than G, Poisson's Ratio, i, approaches 0.5 and the mat-

erial becomes incompressible. Results obtained for a case

in which B was kept constant and large compared to G were

similar to Run 33. However, a small strain formulation

where B was larger compared to G yielded results qualita-

tively similar to those for the non-dilatant material.
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The large strain model appears to be very sensitive

to large values of P. More work is required to determine

the effects of p on the large strain hyperbolic formula-

tion for a frictional material. A formulation which uses

the elastic parameters E and p instead of B and G or one

which limits the largest value of B may be more desirable.

4.3 Strip Footing on Cohesive Material

For purely cohesive material the non-dilatant and

dilatant plastic relations reduce to the Tresca perfectly

plastic relations. Christian (1966) investigated the un-

drained behavior of the Tresca relations and found that

the load at failure agreed well with values obtained from

limiting equilibrium. The results of a flexible footing

using the non-dilatant model are shown as Run 30 in

Figure 4.12. The finite element grid used for the un-

drained analyses is shown in Figure 4.13. For an un-

drained strength of 17.1 TSM the bearing capacity is 87.9

TSM. The non-dilatant model predicts a bearing capacity

of about 85 TSM. Run 31 is the result of the Tresca model

which fails at a bearing capacity of 88 TSM. The only

difference between Run 30 and Run 31 is that the non-dil-

atant model is the Tresca constitutive relations for small

strains and the Tresca model is the Tresca constitutive

relations for large strains. The two formulations produce

similar results until yielding starts to occur. At loads
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close to failure the large strain formulation produces a

better solution for the stresses as evidenced by the

close prediction of the failure load.

The large strain hyperbolic model produces good

results for a footing on purely cohesive soil, Run 32 in

Figure 4.12. The elastic constants input to each of the

three models used to obtain the results in Figure 4.12

are the same; however, the hyperbolic model requires

additional soil parameters which were chosen as reasonable

approximations for Run 32. Consequently, for a given load

the hyperbolic model produces more displacement than the

non-dilatant and Tresca models and the failure load is

less.

The spread of the yielded zone beneath a footing

on undrained material is shown in Figure 4.14 for the

large strain Tresca constitutive relation. Unlike a fric-

tional material which develops a significant yielded zone

at a low percent of the final failure load, the cohesive

material does not begin to yield until almost half the

final failure load has been applied. However, part of

this behavior is due to the fact that the frictional mat-

erial analyses were done using Ko initial conditions;

whereas the undrained analyses were done with isotropic

initial conditions.
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Chapter 5

CONCLUSIONS AND RECOMMENDATIONS

The behavior of finite element models employing

five different constitutive relations to describe the

stress-strain behavior of soils has been investigated

by analyzing the load-deformation behavior of retaining

walls and footings. The constitutive relations des-

cribe a strain hardening material, a dilatant material

and a non-dilatant material using a small strain for-

mulation and a Tresca elastic-perfectly plastic material

and a material with a hyperbolic stress-strain relation

using a large strain formulation. Hagmann (1971) devel-

oped the finite element programs for the small strain

formulations and Molina (1971) developed those for the

large strain formulations.

The effects of varying the finite element model were

considered and several conclusions can be drawn:

1) For a given amount of computer time, smaller

load increments provide a better solution for

a non-linear material than a larger number of

elements, provided there are enough elements

to model the significant aspects of the problem.
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2) For footing and retaining wall problems, there

is a tendency for tension stresses to develop

in surface elements. This behavior can be

overcome by reducing the stiffness of tensile

elements and changing their stresses to zero

values.

3) For stress states which exceed the Mohr-Coulomb

failure envelope, applying a correction which

does not change the vertical stress produces

good results.

4) Unless corrections are applied to the strain

and nodal force computations to make them con-

sistent with the corrected stresses which have

exceeded the yield criteria, loads should be

computed from element stresses rather than nodal

forces.

Each of the constitutive relations were used to ob-

tain solutions to footing and retaining wall problems.

The following conclusions can be obtained:

1) Both the dilatant and non-dilatant models give

results for the failure of retaining walls

which are in good agreement with published

analytical solutions.
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2) The non-dilatant model gives a reasonable solution

for the bearing capacity problem in a frictional

material, while the dilatant model is too strong

when the side boundary is fixed.

3) The strain hardening model needs an additional

relation which describes the stress-strain

behavior on the Mohr-Coulomb failure envelope.

4) The large strain hyperbolic model appears to be

very sensitive to large values of Poisson's

Ratio for frictional materials. More work is

required to obtain the best way to formulate a

hyperbolic stress-strain constitutive relation

in a large strain analysis of frictional mat-

erials.

5) The non-dilatant, dilatant, hyperbolic and Tresca

relations give good solutions for the undrained

failure of footings. The large strain Tresca

formulation improves the stress-strain be-

havior at stress levels close to failure.

In general the finite element method combined with

an appropriate constitutive relation can predict the

correct failure behavior of soil behind retaining walls.

The bearing capacity problem for frictional soils is

much more complex and good solutions are more difficult
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if not impossible to obtain either analytically or by

the finite element method.

Several recommendations for future research can be

given:

1) An additional relation which describes the

stress-strain behavior of stress states on the

Mohr-Coulomb envelope should be added to the

strain hardening model. Either the plastic re-

lations of the non-dilatant model or a strain-

softening constitutive relation seem appropriate.

2) The sensitivity of the large strain hyperbolic

formulation to large values of Poisson's Ratio

needs to be examined. A reformulation in terms

of other elastic constants may be necessary to

obtain the stress-strain behavior of friction-

al materials.

3) The non-dilatant model should be used to predict

the results of field cases for the bearing capa-

city failure where the soil parameters are

known to determine how appropriate its solutions

are.

4) Each of the constitutive relations considered in

this work fail to describe adequately behavior

at stresses close to failure. Efforts to de-

velop such a constitutive relation should be con-

tinued.
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5) Finite element solutions are in general very ex-

pensive. Efforts should be made to apply these

programs to common problems and by varying the

important soil parameters generate parametric

plots which can be useful in design by the engin-

eering profession.
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APPENDIX A

LIST OF SYMBOLS AND NOTATIONS

B Bulk modulus; strip footing width

c Cohesion intercept in the Mohr-Coulomb criterion

d Cohesion intercept in p-q plane; d=c-cosP

D Ratio of half-axes of elliptical yield surface

E Young's Modulus

G Shear modulus

H Height of retaining wall

K Coefficient of lateral earth pressure

Ko Coefficient of lateral stress at rest

n Rate exponent in hyperbolic model

Ny Bearing capacity factor

p Value of (al+d3)/2

Pa Atmospheric pressure

q Value of (a
1
-a3 )/2

Rf Failure ratio for hyperbolic model

Su Undrained strength of soil

at Slope of failure envelope in p-q plane; tana = sine

f Frictional coefficient from Mohr-Coulomb failure
criterion in 3-dim. space for strain hardening model

y Unit weight of soil

0 Friction angle in Mohr-Coulomb criterion
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Poisson's ratio

a1 Major principal stress

a3 Minor principal stress

Oxx,'(zz) Normal stresses in horizontal (vertical)
direction

Txz Shear stress in x,z directions in plane
denotes modified value of stress
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APPENDIX B

ADJUSTMENT OF STRESSES TO MOHR-COULOMB YIELD SURFACE

The Mohr-Coulomb line represents the maximum stress

state an element may have. Due to the incremental nature of

applying loads, element stress states may exceed the Mohr-

Coulomb yield surface during a load increment. Since no

state of stress may exceed the failure envelope, the stresses

in these elements must be corrected. The three procedures

developed are derived below. Table B.1 gives an example of

the corrected stresses for each procedure.

B.1 Correction With Constant P, Subroutine MOCO1

Figure B.1 shows a computed stress state which exceeds

the Mohr-Coulomb failure line. The failure line requires

that for yielded elements

q' = d - p'.tana (B-l)

Primes (') are used to denote corrected stress values and

symbols are defined in Appendix A. Correcting with constant

pP

p' = P (B-2)

q' = d - p-tana
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Let

a = q'/q

(B-3).a -az 
b=a (

2

Then it follows that

P' =P

q' = d - p-tana

al'= p + q'

0 3 = p - q' (B-4)

a = p + b
xx

zz = p - b

T = a x z
xz xz

This method reduces the radius of the Mohr's circle

until a stress state compatible with the yield surface is

reached. No rotation of principal planes occurs due to the

correction.

B.2 Correction Perpendicular to Mohr-Coulomb Yield Surface,
Subroutine MOC02

Figure B.2 illustrates this procedure where both p and

q are corrected. From geometry considerations we obtain

q - q' = cota (B-5)
P - P
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Combining Eqs. (B-5) and (B-1) and solving for p' and q'

p,= (d-)tana + p (B-6)

1 + tan2a

q' = d - p'.tana

To solve for the corrected stresses we require that

there be no rotation of principal planes induced by the

correction technique, or

a = -= xz (B-7)
xz

Let

b =3 _ (B-8)
pP

and we obtain

a1' = P' + q'

P' - q

a+ )X +
(
b-a )Z

xx ( ) + ( zz (B-9)

= (a+b) + (-)

'- at
Txz XZ

where p' and q' are obtained from Eq. (B-6).
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B.3 Correction Maintaining Vertical Stress Constant,

Subroutine MOC03

This correction procedure requires that stress states

over the Mohr-Coulomb line be corrected without changing

the vertical stress, azz' Again we require that the correc-

tion does not produce rotation of principal planes.

a q = xz (B-3)
q TXZxz

Combining Eq. (B-3) with

1

[(azz- CY +XX
q = . _ . + TXZ 

and requiring that a = a we obtain
zz zz

(zzXX + T 2 = 2a [)+ T2\ (B-10)

2
(azzxx ]x 

+ T ' = d J tana (B-ll)

Equations (B-3), (B-10) and (B-ll) are three equations with

the unknowns Txz' ax and a. Solving these equations
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we obtain

c .tans - d
zz

a =
tan (
-(-a--( -axx) -q2 zz xx

q' = aq

p = d -q'

tana c~(B-12)

al '= p' + q'

31 p' - q

xx (d - aq) axx tana zz
tancs

ZZ ZZ

T ' = a-T
xz illustrated in Figure B.

This procedure is illustrated in Figure B.3.
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B-2 : CORRECTION SCHEME WITH CORRECTION
PERPENDICULAR TO MOHR-COULOMB LINE
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