

# **RESONANT COLUMN**

# TORSIONAL SHEAR

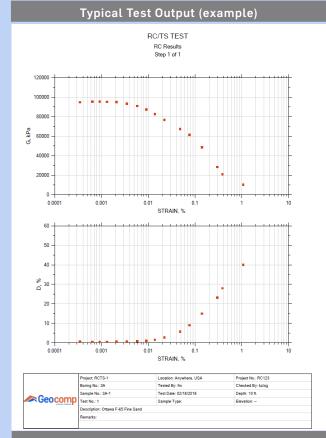
The basic principle of the resonant column device is to excite one end of a confined cylindrical soil specimen in a fundamental mode of vibration by means of torsional or longitudinal excitation. Once the fundamental mode of resonance frequency is established, measurements are made of the resonance frequency amplitude of vibration from which wave propagation velocities and strain amplitudes are calculated using the theory of elasticity. The shear modulus is determined from the derived velocity and the density of the specimen. The resonant column test is used to measure shear modulus (G) and the damping ration (D) as small shear strains. These values are a function of strain level.

- Built in safety features
- Smart and sophisticated technologies to simplify testing
- Repeatable, reliable, and accurate results you can trust
- Real-time and remote test parameter changes for quality control
- Convenient reporting and data export
- Faster, smarter, better: designed with full automation and manual control options
- Easy upgrade to perform additional test types
- · Designed and manufactured in the USA

#### **Applicable Test Standards**

- ASTM D4015, D4767
- AASHTO T297




Resonant Column Torsional Shear

# **RESONANT COLUMN**

### **TORSIONAL SHEAR**



### **TECHNICAL SPECIFICATIONS LOAD CAPACITY** 22.5 kN (5 klbf) **MOTORS** Micro-stepper system with built-in controls **RATE OF DISPLACEMENT** 0.00003 to 35 mm per minute (0.000001 to 0.6 in per minute) **FLOW RATE** 0.000006 cc/sec to 3 cc/sec **TRAVEL** Built-in displacement transducer with 76 mm (3 in) range and 0.0013 mm (0.00005 in) resolution **POWER** 110/220 V, 50/60 Hz, 1 phase **DIMENSIONS** LoadTrac II FlowTrac II 464 x 546 x 1206 mm 203 x 546 x 470 mm (18 x 21.5 x 47.5 in) (8 x 16 x 18.5 in) **WEIGHT** FlowTrac II LoadTrac II 55 kg (120 lbs) 14 kg (30 lbs) **INCLUDED** • GeoNet-U USB 2.0 network adapter and cable to link to PC/laptop TRIAXIAL software module to automatically run and report tests **ACCESSORIES** · FlowTrac II models available • 200 psi (1400 kPa) 250-750 cc 500 psi (3500 kPa) • 71 mm (2.8 in) diameter sample preparation accessories · Membranes, porous stones, and sample preparation accessories upon request • RCTS.REPORT: editing/reporting software for multiple tests **WARRANTY** 12 month warranty; extended warranties available User Friendly Interface ncy: 100



#### Typcial Test Output (example)

RC/TS TEST RC Results

| Excitation %     | Excitation<br>Frequency<br>Hz | Active<br>Rotation<br>deg         | Active<br>Torque<br>N-m | Estimated<br>Passive<br>Rotation<br>deg | Passive<br>Torque<br>N-m                 | Estimated<br>Resonant<br>Frequency<br>Hz | Average<br>Shear<br>Strain<br>% | Shear<br>Modulus<br>kPa                 | Damping<br>Ratio | MFC       |
|------------------|-------------------------------|-----------------------------------|-------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|---------------------------------|-----------------------------------------|------------------|-----------|
| 0.063889         | 143.41                        | 0.0010996<br>168.76               | 0.00034773<br>-109.87   | 3.7945e-05<br>169.31                    | 0.031745<br>169.39                       | 143.56                                   | 0.00034760<br>168.74            | 94739.                                  | 0.60789          | 0.0031687 |
| 0.10141          | 143.88                        | 0.0020156<br>158.84               | 0.00043973<br>-125.90   | 7.0038e-05<br>159.18                    | 0.058584<br>159.27                       | 144.03                                   | 0.00063706<br>158.83            | 95404.                                  | 0.40655          | 0.0058440 |
| 0.16070          | 143.99                        | 0.0028943<br>159.41               | 0.00071382<br>-110.70   | 0.00010054<br>159.82                    | 0.083700<br>159.92                       | 143.97                                   | 0.00091478<br>159.40            | 95361.                                  | 0.47594          | 0.0083782 |
| 0.25496          | 143.94                        | 0.0041370<br>160.59               | 0.00094703<br>-105.29   | 0.00014350<br>160.96                    | 0.11914<br>161.05                        | 143.92                                   | 0.0013076<br>160.57             | 95218.                                  | 0.44102          | 0.011962  |
| 0.40409          | 143.70                        | 0.0065935<br>157.75               | 0.0017868<br>-106.46    | 0.00022786<br>158.21                    | 0.18878<br>158.30                        | 143.62                                   | 0.0020843<br>157.73             | 94857.                                  | 0.52319          | 0.019003  |
| 0.64058          | 142.76                        | 0.011062<br>159.40                | 0.0034146<br>-94.124    | 0.00037633<br>159.93                    | 0.30866<br>160.02                        | 142.51                                   | 0.0034987<br>159.39             | 93350.                                  | 0.58342          | 0.031380  |
| 1.0148           | 141.17                        | 0.018383<br>158.73                | 0.0074301<br>-87.444    | 0.00060936<br>159.43                    | 0.49524<br>159.52                        | 140.69                                   | 0.0058198<br>158.71             | 90908.                                  | 0.74784          | 0.05090   |
| 1.6088           | 138.61                        | 0.028736<br>159.31                | 0.015872<br>-86.424     | 0.00091509<br>160.34                    | 0.73316<br>160.41                        | 138.00                                   | 0.0091098<br>159.27             | 87276.                                  | 1.0592           | 0.076934  |
| 2.5503           | 135.21                        | 0.043613<br>161.01                | 0.032890<br>-86.006     | 0.0013157<br>162.54                     | 1.0404<br>162.62                         | 134.37                                   | 0.013854<br>160.96              | 82582.                                  | 1.5390           | 0.1110    |
| 4.0441           | 130.84                        | 0.069702<br>166.02                | 0.082434<br>-85.979     | 0.0019597<br>168.75                     | 1.5249<br>168.83                         | 129.74                                   | 0.022216<br>165.94              | 76747.                                  | 2.6702           | 0.1670    |
| 6.4166           | 122.76                        | 0.15018<br>-175.09                | 0.32449<br>-80.004      | 0.0037464<br>-169.11                    | 2.9906<br>-169.01                        | 122.18                                   | 0.048319<br>-175.25             | 67356.                                  | 5.7507           | 0.3231    |
| 10.173           | 118.19                        | 0.23374<br>-170.33                | 0.72929<br>-74.098      | 0.0053931<br>-160.95                    | 4.1445<br>-160.76                        | 117.08                                   | 0.075831<br>-170.55             | 61326.                                  | 9.0100           | 0.4632    |
| 16.142           | 106.28                        | 0.42233<br>-154.97                | 1.7705<br>-61.182       | 0.0080330<br>-139.51                    | 6.2000<br>-139.44                        | 105.24                                   | 0.13982<br>-155.27              | 48524.                                  | 14.984           | 0.68890   |
| 25.629           | 82.804                        | 0.87271<br>-142.13                | 3.4266<br>-48.751       | 0.010433<br>-118.80                     | 7.8093<br>-118.63                        | 81.689                                   | 0.29809<br>-142.40              | 28303.                                  | 23.165           | 0.8656    |
| 40.668           | 70.388                        | 1.1040<br>-109.67                 | 3.9604<br>-21.696       | 0.010296<br>-82.050                     | 9.2754<br>-81.961                        | 71.084                                   | 0.38713<br>-109.92              | 20855.                                  | 27.943           | 0.8482    |
| 64.509           | 51.528                        | 2.9631<br>-132.12                 | 7.6670<br>-38.669       | 0.015345<br>-95.235                     | 10.450<br>-97.551                        | 50.342                                   | 1.0737<br>-132.29               | 10114.                                  | 40.013           | 1.0969    |
|                  |                               |                                   |                         |                                         |                                          |                                          |                                 |                                         |                  |           |
|                  |                               |                                   |                         |                                         |                                          |                                          |                                 |                                         |                  |           |
|                  |                               |                                   |                         |                                         |                                          |                                          |                                 |                                         |                  |           |
|                  |                               |                                   |                         |                                         |                                          |                                          |                                 |                                         |                  |           |
|                  |                               |                                   |                         |                                         |                                          |                                          |                                 |                                         |                  |           |
|                  |                               |                                   |                         |                                         |                                          |                                          |                                 |                                         |                  |           |
|                  |                               |                                   |                         |                                         |                                          |                                          |                                 |                                         |                  |           |
|                  |                               |                                   |                         |                                         |                                          |                                          |                                 |                                         |                  |           |
|                  |                               |                                   |                         |                                         |                                          |                                          |                                 |                                         |                  |           |
|                  |                               | 1                                 |                         |                                         |                                          |                                          |                                 |                                         |                  |           |
| <b>∕</b> Geocomp |                               | Project: RCTS-1<br>Boring No.: 3A |                         |                                         | Location: Anywhere, USA<br>Tested By: fm |                                          |                                 | Project No.: RC123<br>Checked By: kz/sg |                  |           |
|                  |                               | Sample No.: 3A-1                  |                         |                                         | Test Date: 02/18/2018                    |                                          |                                 | Depth: 10 ft.                           |                  |           |
|                  |                               | Test No.: 1                       |                         |                                         | Sample Type:                             |                                          |                                 | Elevation:                              |                  |           |

V.3 @Geocomp 5/2024